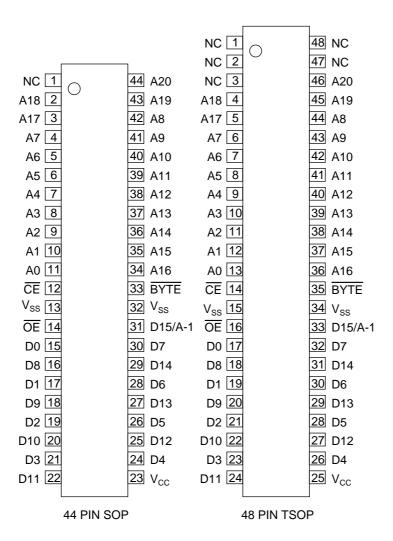


OKI Semiconductor

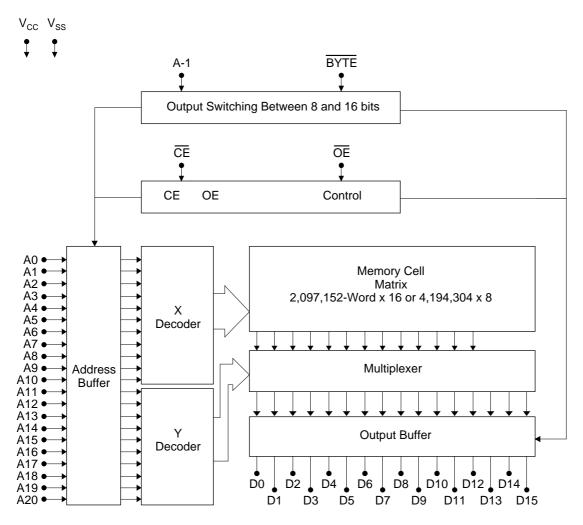
MSM533222E

2,097,152-Word x 16-Bit or 4,194,304-Word x 8-Bit MASKROM


DESCRIPTION

The OKI MSM533222E is a high-speed CMOS Mask ROM that can electrically switch between 2,097,152-word x 16-bit or 4,194,304-word x 8-bit configurations. The MSM533222E Operates on a single 5.0V power supply and is TTL compatible. The chip's asynchronous I/O requires no external clock assuring easy operation. A power-down mode provides low power dissipation when the chip is not selected. The CE and OE pins are provided as control signals that permit three-stated output allowing easy memory expansion on a system bus. The MSM533222E is suited for use as large capacity fixed memory for microcomputers and data terminals.

FEATURES


Single 5.0V power supply 2,097,152-words x 16-bit/4,194,304-words x 8-bit Access time 100ns MAX Input/Output TTL compatible Tri-State output configurations Internal powerdown function Packages: 44-PIN PLASTIC SOP (SOP44-P-600-K) 48-PIN PLASTIC TSOP (TSOP48-P-550-K)

PIN CONFIGURATION

Pin Name	Function
D15/A-1	Data output / address input
A0 to A20	Address input
D0 to D15	Data output
CE	Chip enable
ŌĒ	Output enable
BYTE	Mode switch
V _{CC} , V _{SS}	Power supply

BLOCK DIAGRAM

FUNCTION TABLE

CE	ŌĒ	BYTE	A-1/D15	D0 to D7	D8 to D15	D _{OUT} Mode	LSB	MSB
Н	Х	Х	X	Hi-Z	Hi-Z	Hi-Z		_
L	Н	Х	X	Hi-Z	Hi-Z	1 II-Z		
L	L	Н	Input Inhibited (D15)	D0 to D7	D8 to D15	16 bit	A0	A20
L	L	L	L	D0 to D7	Hi-Z	8 bit	A-1	A20
L	L	L	Н	D8 to D15	Hi-Z	O DIL	A-1	A20

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

Parameter	Symbol	Conditions	Limits	Unit
Power Supply Voltage	V _{CC}		-0.3 to 7	V
Input Voltage	V _I	to V _{SS}	-0.3 to $V_{CC} + 0.5$	V
Output Voltage	Vo		-0.3 to $V_{CC} + 0.5$	V
Power Dissipation	P _D	Per Package T _{opr} = 25°C	1.0	W
Operating Temperature	T _{opr}	_	0 to 70	°C
Storage Temperature	T _{stg}	_	-55 to 150	°C

Recommended Operating Conditions

Deventer	Symbol Conditions	0		1.1		
Parameter		Min.	Тур.	Max.	Unit	
Power Supply Voltage	V _{cc}	_	4.5	5.0	5.5	V
	V _{SS}	_	0.0	0.0	0.0	V
"H" Input Voltage	V _{IH}	_	2.2	5.0	V _{CC} + 0.5	V
"L" Input Voltage	V _{IL}	_	-0.3	0.0	0.8	V
Operating Temperature	T _{opr}	_	0	_	70	°C

DC Characteristics

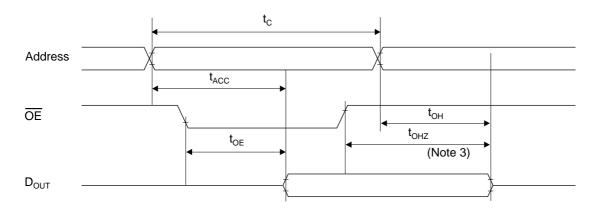
 $(V_{CC} = 5V \pm 10\%, Ta = 0 \text{ to } 70^{\circ}C)$

Davamatav	Cymphal	Conditions		Unit		
Parameter	Symbol Conditions		Min.	Тур.	Max.	Offic
"H" Output Voltage	V _{OH}	$I_{OH} = -400 \mu A$	2.4	_		V
"L" Output Voltage	V _{OL}	I _{OH} = 2.1mA		_	0.4	V
Input Leakage Current	I _{LI}	$V_I = 0$ to V_{CC}	-10	_	10	μA
Output Leakage Current	I _{LO}	$\frac{V_O}{CE} = 0 \text{ to } V_{CC}$	-10	_	10	μA
Power Supply Current (Operating)	I _{cc}	$\overline{CE} = V_{IL}, \overline{OE} = V_{IH}, t_C = 120$ ns	_	_	65	mA
Power Supply Current	I _{CCS} 1	$\overline{CE} = V_{CC} - 0.2V$	_	_	50	μA
(Standby)	I _{ccs}	$\overline{CE} = V_{IHMIN}$	-	_	500	μA

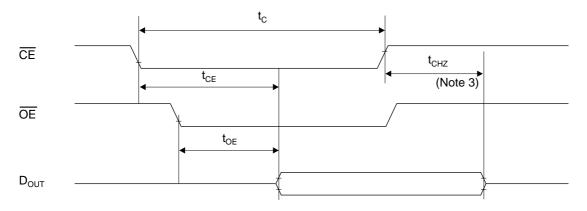
AC CHARACTERISTICS

Timing conditions

Parameter	Conditions
Input Signal Level	V _{IH} =3.0V, V _{IL} =0.0V
Transtion Time	t _r =t _f =5ns
Timing Reference Level	Input Voltage=1.5V Output Voltage=0.8V&2.0V
Load Condition	CL=100pF+1TTL


Read Cycle

 $(Ta = 0 \text{ to } 70^{\circ}C)$


Down-retorn	Symbol	Conditions	Limits			1.1:4
Parameter			Min.	Тур.	Max.	Unit
Cycle time	t _C	_	100		_	ns
Address Access time	t _{ACC}	_	_	_	100	ns
CE Access time	t _{CE}	_	_	_	100	ns
OE Access time	t _{OE}	_	_	_	50	ns
CE Output Disable time	t _{CHZ}	_	0	_	40	ns
OE Output Disable time	t _{OHZ}	_	0	_	30	ns
Output Hold time	t _{OH}	_	0		_	ns

MSM533222E

Read Cycle (Note 1)

Read Cycle (Note 2)

- Note)
- CE is low level.
 Address is fixed before or at the same time when CE level falls.
 t_{CHZ} & t_{OHZ} indicate the time until floating. They are not determined by the output level.

I/O CAPACITANCE

Parameter	Symbol	Conditions				
			Min.	Тур.	Max.	Unit
Input Capacitance	Cı	V _I =0V	_	_	8	pF
Output Capacitance	Co	V _O =0V	_	_	10	pF

NOTICE

The information contained herein can change without notice owing to product and/or technical improvements. Before using the product, please make sure that the information being referred to is up-to-date.

The outline of action and examples for application circuits described herein have been chosen as an explanation for the standard action and performance of the product. When planning to use the product, please ensure that the external conditions are reflected in the actual circuit, assembly, and program designs.

When designing your product, please use our product below the specified maximum ratings and within the specified operating ranges including, but not limited to, operating voltage, power dissipation, and operating temperature.

Oki assumes no responsibility or liability whatsoever for any failure or unusual or unexpected operation resulting from misuse, neglect, improper installation, repair, alteration or accident, improper handling, or unusual physical or electrical stress including, but not limited to, exposure to parameters beyond the specified maximum ratings or operation outside the specified operating range.

Neither indemnity against nor license of a third party's industrial and intellectual property right, etc. is granted by us in connection with the use of the product and/or the information and drawings contained herein. No responsibility is assumed by us for any infringement of a third party's right which may result from the use thereof.

The products listed in this document are intended for use in general electronics equipment for commercial applications (e.g., office automation, communication equipment, measurement equipment, consumer electronics, etc.). These products are not authorized for use in any system or application that requires special or enhanced quality and reliability characteristics nor in any system or application where the failure of such system or application may result in the loss or damage of property, or death or injury to humans. Such applications include, but are not limited to, traffic and automotive equipment, safety devices, aerospace equipment, nuclear power control, medical equipment, and life-support systems.

Certain products in this document may need government approval before they can be exported to particular countries. The purchaser assumes the responsibility of determining the legality of export of these products and will take appropriate and necessary steps at their own expense for these.

No part of the contents cotained herein may be reprinted or reproduced without our prior permission.

All brand, company and product names are the trademarks or registered trademarks of their respective owners.

Copyright 1998 Oki Electric Industry Co., Ltd.

ADDRESSES & SEMICONDUCTOR WEB SITES

OKI Electric Industry Co., Ltd.,

Device Business Group, 10-3, Shibaura, 4-chome, Minato-ku, Tokyo 108, Japan, Tel.: +81-(0)3-5445-6327,

Fax.: +81-(0)3-5445-6328,

http://www.oki.co.jp/OKI/DBG/english/index.htm

(NOTE: URL is case sensitive)

OKI Semiconductor Group.

785 North Mary Avenue, Sunnyvale, CA 94086, U.S.A., Tel.: +1-408-720-1900, Fax.: +1-408-720-1918, http://www.okisemi.com/

OKI Electric Europe GmbH,

Head Office Europe, Hellersbergstrasse 2, D-41460 Neuss, Germany, Tel: +49-2131-15960, Fax: +49-2131-103539, http://www.oki-europe.de/

OKI Electronics (Hong Kong) Ltd.,

Suite 1901-1&19, Tower 3, China Hong Kong City, 33 Canton Road, Tsimshatsui, Kowloon, Hong Kong, Tel.: +852-2-736-2336,

Fax.: +852-2-736-2395

OKI Semiconductor (Asia) Pte. Ltd.,

78 Shenton Way 09-01, Singapore 0207, Tel.: +65-221-3722, Fax.: +65-323-5376

OKI Semiconductor (Asia) Pte. Ltd.,

Taipei Branch,

7th Fl. No.260, Tun Hwa North Road,

Taipei, Taiwan, R.O.C., Sumitomo-Flysun Building, Tel.: +886-2-2719-2561,

Fax.: +886-2-2715-2892 http://www.oki.net.tw/

For further information, please contact:

